Trees with Maximum Vertex-Degree-Based Topological Indices
نویسندگان
چکیده
منابع مشابه
On discriminativity of vertex-degree-based indices
A recently published paper [T. Došlić, this journal 3 (2012) 25-34] considers the Zagreb indices of benzenoid systems, and points out their low discriminativity. We show that analogous results hold for a variety of vertex-degree-based molecular structure descriptors that are being studied in contemporary mathematical chemistry. We also show that these results are straightforwardly obtained by u...
متن کاملOn the extremal total irregularity index of n-vertex trees with fixed maximum degree
In the extension of irregularity indices, Abdo et. al. [1] defined the total irregu-larity of a graph G = (V, E) as irrt(G) = 21 Pu,v∈V (G) du − dv, where du denotesthe vertex degree of a vertex u ∈ V (G). In this paper, we investigate the totalirregularity of trees with bounded maximal degree Δ and state integer linear pro-gramming problem which gives standard information about extremal trees a...
متن کاملM-polynomial and degree-based topological indices
Let $G$ be a graph and let $m_{ij}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The {em $M$-polynomial} of $G$ is introduced with $displaystyle{M(G;x,y) = sum_{ile j} m_{ij}(G)x^iy^j}$. It is shown that degree-based topological indices can be routinely computed from the polynomial, thus reducing the problem of their determination in each particular ca...
متن کاملon discriminativity of vertex-degree-based indices
a recently published paper [t. došlić, this journal 3 (2012) 25-34] considers the zagrebindices of benzenoid systems, and points out their low discriminativity. we show thatanalogous results hold for a variety of vertex-degree-based molecular structure descriptorsthat are being studied in contemporary mathematical chemistry. we also show that theseresults are straightforwardly obtained by using...
متن کاملm-polynomial and degree-based topological indices
let $g$ be a graph and let $m_{ij}(g)$, $i,jge 1$, be the number of edges $uv$ of $g$ such that ${d_v(g), d_u(g)} = {i,j}$. the {em $m$-polynomial} of $g$ is introduced with $displaystyle{m(g;x,y) = sum_{ile j} m_{ij}(g)x^iy^j}$. it is shown that degree-based topological indices can be routinely computed from the polynomial, thus reducing the problem of their determination in each particular ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Match
سال: 2022
ISSN: ['0340-6253']
DOI: https://doi.org/10.46793/match.88-3.535g